

Attitude Determination and Con (ADCS)

16.684 Space Systems Product Developmen 16.684 Space Systems Product Developmen Spring 2001 Spring 2001

Olivier L. de Olivier L. de Weck

Department of Aeronautics and Astronautics Massachusetts Institute of Technology Massachusetts Institute of Technology

ADCS Motivation

- **Motivation**
	- In order to point and slew optical systems, spacecraft attitude control provides coarse pointing while optics control provides fine pointing
- **Spacecraft Control**
	- Spacecraft Stabilization
		- Spin Stabilization
		- Gravity Gradient
		- Three-Axis Control
		- Formation Flight
	- Actuators
		- Reaction Wheel Assemblies (RWAs)
		- Control Moment Gyros (CMGs)
		- Magnetic Torque Rods
		- Thrusters
- Sensors: GPS, sta sensors, rate gyro measurement unit
- Control Laws
- **Spacecraft Slew Ma**
	- Euler Angles
	- Quaternions

Key Question What are the poi requirements for sa

NEED expendable pro

- **On-board fuel often det**
- **Failing gyros are critica**

- ^Å Definitions and Terminology
- ^Å Coordinate Systems and Mathematical Attitude Repres
- ^Å Rigid Body Dynamics
- ^Å Disturbance Torques in Space
- ^Å Passive Attitude Control Schemes
- ^Å Actuators
- ^Å Sensors
- ^Å Active Attitude Control Concepts
- ^Å ADCS Performance and Stability Measures
- ^Å Estimation and Filtering in Attitude Determination
- ^Å Maneuvers
- ^Å Other System Consideration, Control/Structure interact
- ^Å Technological Trends and Advanced Concepts

- ^Å Nearly all ADCS Design and Performance can be vie terms of RIGID BODY dynamics
- Typically a Major spacecraft system
- \circ For large, light-weight structures with low fundament frequencies the flexibility needs to be taken into acco
- ^Å ADCS requirements often drive overall S/C design
- ^Å Components are cumbersome, massive and power-co
- ^Å Field-of-View requirements and specific orientation a
- ^Å Design, analysis and testing are typically the most challenging of all subsystems with the exception of p design
- ^Å Need a true "systems orientation" to be successful at designing and implementing an ADCS

ATTITUDE : Orientation of a defined spacecraft body coord system with respect to a defined external frame (GCI,H

ATTITUDE ATTITUDE DETERMINATION: DETERMINATION: Real-Time or Post-Facto know within a given tolerance, of the spacecraft attitude

ATTITUDE CONTROL: Maintenance of a desired, specified within a given tolerance

ATTITUDE ERROR: "Low Frequency" spacecraft misalignm usually the intended topic of attitude control

ATTITUDE JITTER: "High Frequency" spacecraft misaligni usually ignored by ADCS; reduced by good design or pointing/optical control.

a = pointing accuracy = attitude error a = pointing accuracy = attitude error s = stability = attitude jitter s = stability = attitude jitter

in the pla

Describe the orientation of a body:

- (1) Attach a coordinate system to the body
- (2) Describe a coordinate system relative to an inertial reference frame

Rotation matrix from ${A}$ = **Reference** coordinat ${B}$ = **Body** coordinate sys $\overset{A}{B}R = \begin{bmatrix} A \hat{X}_B & A \hat{Y}_B \end{bmatrix}^A$

Special properties of rota $R^T R = I$, $R^T =$ $\|\boldsymbol{R}\|$ = 1 (1) Orthogona $R\ \frac{B}{C}R \neq \frac{B}{C}R$ *B C* $\begin{bmatrix} A & B \\ B & C \end{bmatrix}$ **R** (2) Orthonorm (3) Not commu

Euler angles describe a sequence of three rotations abo axes in order to align one coord. system with a second

Euler Angles (2)

- ^Å Concept used in rotational kinematics to describe body orientation w.r.t. inertial frame
- Sequence of three angles and prescription for rotating one reference frame into another
- ^Å Can be defined as a transformation matrix body/inertial as shown: TB/I
- ^Å Euler angles are non-unique and exact sequence is critical

$$
T_{B/I}^{-1} = T_{I/B} = T_{B/I}^T
$$

Goal: Describe kinematics of frame with respect to rotating

 $(Pitch, Roll, Yaw) = (\theta, \phi, \psi)$

Quaternions

- Main problem computationally is the existence of a singularity
- ^Å Problem can be avoided by an application of Euler's theorem:

EULER'S THEOREM

The Orientation of a body is uniquely specified by a vector giving the direction of a body axis and a scalar specifying a rotation angle about the axis.

- ^Å Definition introduces a redundant fourth element, which eliminates the singularity.
- ^Å This is the **"quaternion"** concept
- ^Å Quaternions have no intuitively interpretable meaning to the human mind, but are computationally convenient

 $\left|\frac{\vec{q}}{q}\right|$ \lfloor I = $\overline{}$ \rfloor $\overline{}$ $\overline{}$ 3 *q* $\overline{}$ $\overline{}$ $\overline{}$ 1 *q* = 4 4 *q* 2 *q q q Q* \Rightarrow

 $\overline{}$ \rfloor

axis of rotat $\vec{q} = A$ vector $q_4 = A$ scala

amount of r

A: Inertial B: Body

Quaternion Demo (MATLAB) Quaternion Demo (MATLAB)

Comparison of Attitude Descriptions Comparison of Attitude Descriptions

Rigid Body Kinematics

And we are able to write:

$$
\underline{H}=I\underline{\omega}
$$

H and ω are resolved in θ

"The vector of angular momentum in the body frame is the pro of the 3x3 Inertia matrix and the 3x1 vector of angular velociti

Inertia Matrix Properties: Real Symmetric ; 3x3 Tensor ; coordinate depende *n*

$$
I_{11} = \sum_{i=1} m_i \left(\rho_{i2}^2 + \rho_{i3}^2 \right) \qquad I_{12} = I_{21} =
$$

$$
I = \begin{bmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{bmatrix} \qquad I_{22} = \sum_{i=1}^{n} m_i (\rho_{i1}^2 + \rho_{i3}^2) \qquad I_{13} = I_{31} = I_{31}
$$

$$
I_{33} = \sum_{i=1}^{n} m_i (\rho_{i1}^2 + \rho_{i2}^2) \qquad I_{23} = I_{32} = I_{33}
$$

i=1

2 $\frac{1}{2}$ \sum $m \dot{\rho}^2$ total $1 \quad \bigcup \quad \begin{array}{c} 1 \\ -i \end{array}$ E-TRANS $1\left(\frac{n}{\sum_{i=1}^n} \right) \dot{n}^2$, 1 $2\left(\frac{\sum_{i=1}^{n}1}{2}\right)$ 2 *n n i* μ + $\frac{1}{2}$ μ μ μ $i=1$ \qquad \qquad \qquad \qquad i $E_{\text{total}} = \frac{1}{2} \sum_{i} m_i \left[R^2 + \frac{1}{2} \sum_{i} m_i \dot{\rho}_i \right]$ $=1$) $=$ $i=$ $=\frac{1}{2}\left(\sum_{i=1}^n m_i\right)\dot{R}^2 +$ $\sum_{i=1}^m m_i \ \int \!\!\!\!\!\! R^2 + \frac{1}{2} \sum_{i=1}^m m_i \dot{\rho}$ $\frac{2}{i}$ $i=1$ $\frac{2}{i}=1$ **Kinetic Energy For a RIGID BODY, CM Coordinates** with ω resolved in body axis frame $1 \nightharpoonup n$ 1 2^-- 2 $E_{\text{ROT}} = \frac{1}{2} \underline{\omega} \cdot \underline{H} =$

In a BODY-FIXED, PRINCIPAL AXES CM FRAME: Euler Euler E

 $\dot{H}_1 = I_1 \dot{\omega}_1 = T_1 + (I_{22} - I_{33})\omega_2 \omega_3$ $\dot{H}_2 = I_2 \dot{\omega}_2 = T_2 + (I_{33} - I_{11})\omega_3 \omega_1$ $\dot{H}_3 = I_3 \dot{\omega}_3 = T_3 + (I_{11} - I_{22})\omega_1 \omega_2$

No general sol Particular solut **simple torque** simulation usu

TORQUE-FREE CASE:

An important special case is the torque-free motion symmetric body spinning primarily about its sym

By these assumptions:

$$
\omega_x, \omega_y \ll \omega_z = \Omega \qquad I_{xx}
$$

The components of angular velocity then become: $\omega_{\mathfrak{X}}$

$$
u_x(t) = \omega_{xo} \cos \omega_n t
$$

(t) = \omega_{xo} \cos \omega_n t \qquad \dot{\omega}_x = -\frac{1}{2} \omega_{xo} \qquad \dot{\omega}_y = -\frac{1}{2} \omega_{xo} \qquad \dot{\omega}_z = -\frac{1}{2} \omega_{xo} \qquad \dot{\omega}_z = -\frac{1}{2} \omega_{vo} \qquad \dot{\omega}_z = -

$$
\omega_{y}(t) = \omega_{yo} \cos \omega_{n} t
$$

The ω_n is defined as the "natural" **or "nutation" frequency of the body:**

And the Euler equ

zz

 $\overline{}$

 $\overline{}$

I

a pri

Spin Stabilized Spacecraft

UTILIZED TO STABILIZE SPINNERS

2

HS 376 SPACECRAFT CONFIGURATION

DUAL SPIN

- ^Å Two bodies rotating a about a common axis
- **Behaves like simple s** is despun (antennas, s
- \circ requires torquers (jets momentum control an dampers for stability
- ^Å allows relaxation of m

Assessment of expected disturbance torques is an esse of rigorous spacecraft attitude control design

Typical Disturbances

- Gravity Gradient: "Tidal" Force due to 1/r2 gravitational for long, extended bodies (e.g. Space Shuttle, Tethered ve
- Aerodynamic Drag: "Weathervane" Effect due to an offse CM and the drag center of Pressure (CP). Only a factor in
- Magnetic Torques: Induced by residual magnetic moment spacecraft as a magnetic dipole. Only within magnetosphe
- o Solar Radiation: Torques induced by CM and solar CP of compensate with differential reflectivity or reaction wheel
- Mass Expulsion: Torques induced by leaks or jettisoned on
- Internal: On-board Equipment (machinery, wheels, cryoco etc…). No net effect, but internal momentum exchange af

Gravity Gradient

$$
\underline{T} = \underline{r} \quad \underline{F}_a
$$

$$
F_a = \frac{1}{2} \rho V^2 S C_D
$$

Drag Coefficient

 $\underline{\mathbf{r}}$ = Vector from body CM **to Aerodynamic CP**

Fa = Aerodynamic Drag Vector in Body coordinates

Aerodynamic $1 \leq C_D \leq 2$

Typically in this Ran Free Molecular F

S = Frontal projected Area

 $V =$ Orbital Velocity $\rho =$ Atmosphere

Exponential D

Magnetic Torque

 $T = M \quad B$

in AMPERE-TURN-m2 (SI) or POLE-CM (CGS)

 \underline{M} = is due to current loops and **residual magnetization, and will be on the order of 100 POLE-CM or more for small spacecraft.**

Typical Values: B= 3 x 10-5 TESLA M = 0.1 Atm2 $T = 3 \times 10^{-6}$ Nm

 $\underline{\mathbf{B}}$ = Earth magnetic field vector **spacecraft coordinates (BODY FR M** = Spacecraft residual dipole **in TESLA (SI)** or Gauss (CGS) u

> **B varies as 1/r3, with its direc along local magnetic field lin**

Conversions: 1 Atm2 = 1000 POLE-CM, 1 TESL

Solar Radiation Torque

$$
\underline{T} = \underline{r} \quad \underline{F}_s
$$

$$
F_s = (1 + K) P_s S
$$

$$
P_s = I_s / c
$$

$$
I_s = 1400
$$
 W/m² @ 1 A.U.

Notes:

(a) Torque is always ⊥ **to sun line (b) Independent of position or velocity as long as in sunlight**

> **Typical Values:** $K = 0.5$ $S = 5 m²$ **r =0.1 m T = 3.5 x 10-6 Nm**

r = Vector from Body CM to optical Center-of-Pressure (C

F_s = Solar Radiation pressur
BODY FRAME coordinat

 $K = \text{Reflectivity}, 0 < K$

S = Frontal Area

Is = Solar constant, depen heliocentric altitude

Mass Expulsion Torque: $\underline{T} = \underline{r} \underline{F}$

Notes:

- **(1) May be deliberate (Jets, Gas venting) or accidenta**
- **(2) Wide Range of r, F possible; torques can dominat**
- **(3) Also due to jettisoning of parts (covers, cannisters**

Internal Torque:

Notes:

- **(1) Momentum exchange between movi has no effect on System H, but will a attitude control loops**
- **(2) Typically due to antenna, solar arra motion or to deployable booms and**

Disturbance Torque for CDIO

Passive control techniques take advantage of basic physic principles and/or naturally occurring forces by designi the spacecraft so as to enhance the effect of one forc while reducing the effect of others.

SPIN STABILIZED

- \circ Requires Stable Inertia Ratio: Iz > Iy =Ix
- ^Å Requires Nutation damper: Eddy Current, Ball-in-Tube, Viscous Ring, Active Damping
- ^Å Requires Torquers to control precession (spin axis drift) magnetically or with jets
- ^Å Inertially oriented

stability

$$
\Delta H = 2H \sin \frac{\Delta \theta}{2} \approx H \Delta \theta = I \omega \cdot \Delta \theta
$$

Large ω

$$
= \text{gyroscopic } \Delta \theta \approx \frac{rF \Delta t}{H} = \frac{rF}{I \omega} \Delta t
$$

H I

$$
\theta \left(\frac{1}{\sqrt{\frac{1}{1-\frac{1
$$

Precession:

r

H =

 \dot{H} =

∴ ∆

Passive Attitude Control (2) Passive Attitude Control (2)

- **GRAVITY GRADIENT** \circ Requires stable Inertias: $I_z \ll I_x$, I_y
	- ^Å Requires Libration Damper: Eddy C Hysteresis Rods
	- ^Å Requires no Torquers
	- ^Å Earth oriented
	- ^Å No Yaw Stability (can add momentu

Active Control Systems directly sense spacecraft att and supply a torque command to alter it as required. is the basic concept of feedback control.

- **Exercise Models most common actuator**
- ^Å Fast; continuous feedback control
- **Q** Moving Parts
- o Internal Torque only; external still required for "momentum dumping"
- ^Å Relatively high power, weight, cost
- ^Å Control logic simple for independent axes (can get complicated with redundancy)

Typical Reaction (Momentum) Wheel Data:

Operating Range Angular Moment $1.3₁$ **Angular Moment 4.0** N **Reaction Torque**

- ^Å One creates torques on a spacecraft by creating equal but torques on **Reaction Wheels** (flywheels on motors).
	- For three-axes of torque, three wheels are necessary. Usua wheels for redundancy (use wheel speed biasing equation)
	- If external torques exist, wheels will angularly accelerate to these torques. They will eventually reach an RPM limit $($ RPM) at which time they must be desaturated.
	- Static & dynamic imbalances can induce vibrations (moun
	- Usually operate around some nominal spin rate to avoid sti

Ithaco RWA's (www.ithaco.com /products.html)

Waterfall plot: Waterfall plot:

Magnetic Torquers

- ^Å Often used for Low Earth Orbit (LEO) satellites
- ^Å Useful for initial acquisition maneuvers
- ^Å Commonly use for momentum desaturation ("dumping") in reaction wheel systems
- May cause harmful influence on star trackers
- ^Å Can be used
	- for attitude control
	- to de-saturate reactio
- ^Å Torque Rods and Coil
	- Torque rods are long
	- Use current to gener field
	- This field will try to Earth's magnetic fie creating a torque on
	- Can also be used to as well as orbital loc

- ^Å Thrusters / Jets
	- Thrust can be used to control attitude but at the cost of consuming fuel
	- Calculate required fuel using "Rocket Equation"
	- Advances in micro-propulsion make this approach more feasible. Typically want $I_{sp} > 1000$ sec
- \circ Use consumables such (Freon, N2) or Hydrazin
- o Must be ON/OFF opera proportional control usu feasible: pulse width mo (PWM)
- **Redundancy usually req** the system more comple expensive
- ^Å Fast, powerful
- **•** Often introduces attitud coupling
- ^Å Standard equipment on spacecraft
- May be used to "unload angular momentum on controlled spacecraft.

- ^Å Global Positioning System (GPS)
	- Currently 27 Satellites
	- 12hr Orbits
	- Accurate Ephemeris
	- Accurate Timing
		- Stand-Alone 100m
		- DGPS 5m
		- Carrier-smoothed DGPS 1-2m

- **•** Magnetometers
	- Measure componen ambient magnetic fi
	- Sensitive to field fro (electronics), mount
	- Get attitude informa comparing measure
	- Tilted dipole model

Where: C=cos, S=sin, φ=latit Units: nTesla

+X

- Rate Gyros (Gyroscopes)
	- Measure the angular rate of a spacecraft relative to inertial space
	- Need at least three. Usually use more for redundancy.
	- Can integrate to get angle. However,
		- DC bias errors in electronics will cause the output of the integrator to ramp and eventually saturate (drift)
		- Thus, need inertial update

- **•** Mechanical gyros (accurate, heavy)
- **•** Ring Laser (RLG)
- \circ MEMS-gyros

o Inertial Measuremen

- Integrated unit wi mounting hardwa software
- measure rotation rate gyros
- measure translatio with acceleromete
- often mounted on platform (fixed in
- Performance 1: gy (range: 0 .003 deg
- Performance 2: lin to 5E-06 g/g^2 ov
- Typically frequen external measurem Trackers, Sun sen Kalman Filter

Courtesy of Silicon Sensing Systems, Ltd. Used with permission.

ACS Sensor Performance Summary

CDIO Attitude Sensing CDIO Attitude Sensing

Will not b use/afford STAR

> **From whe an attitud for inertia**

Potentia **Electroni** Magneto Tilt Sens

Heading accuracy: +/- 1.0 deg RMS @ +/- 20 deg tilt Resolution 0.1 deg, repeatability: +/- 0.3 deg Tilt accuracy: +/- 0.4 deg, Resolution 0.3 deg Sampling rate: 1-30 Hz

Problem: Accuracy insufficient to meet requirements a will need FINE POINTING mode

- **Spin Stabilized Satellites**
	- Spin the satellite to give it gyroscopic stability in inertial space
	- Body mount the solar arrays to guarantee partial illumination by sun at all times
	- EX: early communication satellites, stabilization for orbit changes
	- Torques are applied to precess the angular momentum vector
- o De-Spun Stages
	- Some sensor and antenna systems require inertial or Earth referenced pointing
	- Place on de-spun stage
	- EX: Galileo instrument platform
- **Q** Gravity Gradient St
	- "Long" satellites towards Earth sin feels slightly more force.
	- Good for Earth-re
	- EX: Shuttle gravi minimizes ACS th
- **•** Three-Axis Stabiliz
	- For inertial or Ear pointing
	- Requires active co
	- EX: Modern com satellites, Internat Station, MIR, Hul Telescope

3-axis stabilized, active control most common choice for precisio axis stabilized, active control most common choice for precisio

Feedback Control Concept: Feedback Control Concept:

 $T^c = K \cdot \Delta \theta$ **Correct**

torqu

Force or torque is proportional to deflection. T is the equation, which governs a simple linea or rotational "spring" system. If the spacecra responds "quickly we can estimate the require gain and system bandwidth.

Assume control saturation half-width θ_{sat} at torque command T

$$
K \cong \frac{T_{sat}}{\theta_{sat}} \qquad \text{hence} \qquad \ddot{\theta} + \left(\frac{K}{I}\right)\theta_{sat} \cong 0
$$

Recall the oscillator frequency of a simple linear, torsional spring:

$$
\omega = \sqrt{\frac{K}{I}} \qquad \text{[rad/sec]} \qquad \qquad \text{I = moment} \qquad \text{of inertia}
$$

This natural frequency is approximately equal to the system bandwidth. Also,

$$
f = \frac{\omega}{2\pi}
$$
 [Hz] $\Rightarrow \tau = \frac{1}{f} = \frac{2\pi}{\omega}$

Is approximately the system time constant τ **.**

Note: we can choose any two of the set:

$$
\ddot{\theta}, \theta_{sat}, \omega
$$

EXAM

$$
\theta_{sat} = 10^{-2}
$$

$$
T_{sat} = 10
$$

$$
I = 1000
$$

$$
K = 1000
$$

$$
\therefore K = 1000
$$

$$
\omega = 1
$$

$$
f=0.16
$$

$$
\tau=6.3
$$

Pitch Control with a single reaction wheel

Introduce control torque force couple from jet th

$$
I\ddot{\theta}=T^c
$$

Only three possible values fo

$$
T^{c} = \begin{cases} Fl & \text{o} \\ 0 & \text{c} \\ -Fl & \end{cases}
$$

Can stabilize (drive θ **to by feedback law:**

 $T^c = -Fl \cdot \text{sgn}(\theta +$

Where

$$
sgn(x) = \frac{x}{|x|} \qquad x =
$$

"PHASE PLANE"

At Switch Line: $\theta + \tau \dot{\theta} = 0$

- **Low Frequency Limit Cycle**
- **Mostly Coasting**
- **Low Fuel Usage .**
- $\cdot \theta$ and $\dot{\theta}$ bounded

Solution: Eliminate "Chatter" by "Dead Zone" ; w

Results in the following motion

In the "REAL WORLD" things are somewhat more complicated

- Spacecraft not a RIGID body, sensor, actuator & avionic
- ^Å Digital implementation: work in the z-domain
- ^Å Time delay (lag) introduced by digital controller
- A/D and D/A conversions take time and introduce errors: 16-bit electronics, sensor noise present (e.g rate gyro @ D
- Filtering and estimation of attitude, never get q directly

- ^Å Attitude Determination (AD) is the process of of deriving of spacecraft attitude from (sensor) measurement data. Ex determination is NOT POSSIBLE, always have some error
- ^Å Single Axis AD: Determine orientation of a single spacec in space (usually spin axis)
- ^Å Three Axis AD: Complete Orientation; single axis (Euler when using Quaternions) plus rotation about that axis

- ^Å Utilizes sensors that yield an arclength measurement between sensor boresight and known reference point (e.g. sun, nadir)
- **S** Requires at least two independent measurements and a scheme to choose between the true and false solution
- ^Å Total lack of a priori estimate requires three measurements
- ^Å Cone angles only are measured, not full 3-component vectors. The reference (e.g. sun, earth) vectors are known in the reference frame, but only partially so in the body frame.

- \circ Need two vectors (u,v) measured in the spacecraft frame and known in reference frame (e.g. star position on the celestial sphere)
- ^Å Generally there is redundant data available; can extend the calculations on this chart to include a least-squares estimate for the attitude
- ^Å Do generally not need to know absolute values

$$
|u|,|v|
$$

Define:

$$
\hat{i} = u / |u|
$$

$$
j = (u \quad v) / |u|
$$

$$
\hat{k} = \hat{i} \quad \hat{j}
$$

Want Attitude Matrix

So: $T = MN^{-1}$

Note: N must be non-singular (= full rank)

The previous solutions for Euler's equations were only valid for a RIGID BODY. When flexibility exists, energy dissipation will occur.

Controls/Structure Interaction

- ^Å Need on-board COMPUTER
	- Increasing need for on-board performance and autonomy
	- Typical performance (somewhat outdated: early 1990's)
	- 35 pounds, 15 Watts, 200K words, 100 Kflops/sec, CMOS
	- Rapidly expanding technology in real-time space-based comput
	- Nowadays get smaller computers, rad-hard, more MIPS
	- Software development and testing, e.g. SIMULINK Real Time compilation from development environment MATLAB C, C++ processor is getting easier every year. Increased attention on so
- **Q** Ground Processing
	- Typical ground tasks: Data Formatting, control functions, data a
	- Don't neglect; can be a large program element (operations)
- o Testing
	- Design must be such that it can be tested
	- Several levels of tests: (1) benchtop/component level, (2) enviro testing (vibration,thermal, vacuum), (3) ACS tests: air bearing, simulation with part hardware, part simulated

- **Maneuvers**
	- Typically: Attitude and Position Hold,Tracking/Slewing, SAFE
	- Initial Acquisition maneuvers frequently required
	- Impacts control logic, operations, software
	- Sometimes constrains system design
	- Maneuver design must consider other systems, I.e.: solar arrays towards sun, radiators pointed toward space, antennas toward E
- ^Å Attitude/Translation Coupling
	- (1) Δv from thrusters can affect attitude
	- **(2)** Attitude thrusters can perturb the orbit
- ^Å Simulation
	- Numerical integration of dynamic equations of motion
	- Very useful for predicting and verifying attitude performance
	- Can also be used as "surrogate" data generator
	- "Hybrid" simulation: use some or all of actual hardware, digital the spacecraft dynamics (plant)
	- can be expensive, but save money later in the program

H/W

- **Lower Cost**
	- Standardized Spacecraft, Modularity
	- Smaller spacecraft, smaller Inertias
	- Technological progress: laser gyros, MEMS, magnetic wheel b
	- Greater on-board autonomy
	- Simpler spacecraft design
- ^Å Integration of GPS (LEO)
	- Allows spacecraft to perform on-board navigation; functions in from ground station control
	- Potential use for attitude sensing (large spacecraft only)
- ^Å Very large, evolving systems
	- Space station ACS requirements change with each added modu
	- Large spacecraft up to 1km under study (e.g. TPF Able "kilotru
	- Attitude control increasingly dominated by controls/structure in
	- Spacecraft shape sensing/distributed sensors and actuators

Visible Earth Imager using Visible Earth Imager using a Distributed Satellite System a Distributed Satellite System • Exploit natural orbi

- \sim No ΔV required for collector spacecraft
- ^Å Only need ∆V to hold combiner spacecraft at paraboloid's focus

Formation Flyin Formation Flyin

- synthesize sparse a using formation fly
- Hill's equations exh orbit ellipse" soluti

ACS Model of NGST (large, flexible S/

Guider Camera **Source: G. Mosier NASA GSFC**

Important to assess impact of attitude jitter ("stability") on image quality. Can compensate with fine pointing system. Use a guider camera as sensor and a 2-axis FSM as actuator.

R P RMS RMS

E.g. HST: RMS LOS =

- ^Å James French: AIAA Short Course: "Spacecraft Systems Engineering", Washington D.C.,1995
- ^Å Prof. Walter Hollister: 16.851 "Satellite Engineering" Co Fall 1997
- ^Å James R. Wertz and Wiley J. Larson: "Space Mission An Design", Second Edition, Space Technology Series, Spac Library, Microcosm Inc, Kluwer Academic Publishers