

Attitude Determination and Con (ADCS)

16.684 Space Systems Product Developmen Spring 2001

Olivier L. de Weck

Department of Aeronautics and Astronautic Massachusetts Institute of Technology

ADCS Motivation

- Motivation
 - In order to point and slew optical systems, spacecraft attitude control provides coarse pointing while optics control provides fine pointing
- Spacecraft Control
 - Spacecraft Stabilization
 - Spin Stabilization
 - Gravity Gradient
 - Three-Axis Control
 - Formation Flight
 - Actuators
 - Reaction Wheel Assemblies (RWAs)
 - Control Moment Gyros (CMGs)
 - Magnetic Torque Rods
 - Thrusters

- Sensors: GPS, sta sensors, rate gyro measurement unit
- Control Laws
- Spacecraft Slew Ma
 - Euler Angles
 - Quaternions

Key Question What are the point requirements for same

NEED expendable pro

- On-board fuel often det
- Failing gyros are critica

- Definitions and Terminology
- Coordinate Systems and Mathematical Attitude Repres
- Rigid Body Dynamics
- Disturbance Torques in Space
- Passive Attitude Control Schemes
- Actuators
- Sensors
- Active Attitude Control Concepts
- ADCS Performance and Stability Measures
- Estimation and Filtering in Attitude Determination
- Maneuvers
- Other System Consideration, Control/Structure interact
- Technological Trends and Advanced Concepts

- Nearly all ADCS Design and Performance can be vie terms of RIGID BODY dynamics
- Typically a Major spacecraft system
- For large, light-weight structures with low fundament frequencies the flexibility needs to be taken into acco
- ADCS requirements often drive overall S/C design
- Components are cumbersome, massive and power-co
- Field-of-View requirements and specific orientation a
- Design, analysis and testing are typically the most challenging of all subsystems with the exception of p design
- Need a true "systems orientation" to be successful at designing and implementing an ADCS

ATTITUDE : Orientation of a defined spacecraft body coord system with respect to a defined external frame (GCI,I

ATTITUDE DETERMINATION: Real-Time or Post-Facto know within a given tolerance, of the spacecraft attitude

ATTITUDE CONTROL: Maintenance of a desired, specified within a given tolerance

ATTITUDE ERROR: "Low Frequency" spacecraft misalignut usually the intended topic of attitude control

ATTITUDE JITTER: "High Frequency" spacecraft misalign usually ignored by ADCS; reduced by good design or pointing/optical control.

target	desired pointing
true	actual pointing d
estimate	estimate of true (
a	pointing accuracy
S	stability (peak-pe
k	knowledge error
С	control error

a = pointing accuracy = attitude error s = stability = attitude jitter

in the pla

Describe the orientation of a body:

- (1) Attach a coordinate system to the body
- (2) Describe a coordinate system relative to an inertial reference frame

 $\{A\} = \text{Reference coordinate} \\ \{B\} = \text{Body coordinate sys} \\ \text{Rotation matrix from} \\ \frac{A}{B}R = \begin{bmatrix} A \hat{X}_B & A \hat{Y}_B \end{bmatrix} \\ A \hat{Y}_B & A \hat{Y}_B \end{bmatrix} \\ \text{Special properties of rota} \\ (1) & \text{Orthogona} \\ B & B = I \\ B & B \end{bmatrix}$

ecial properties of rota (1) Orthogona $R^T R = I, R^T =$ (2) Orthonorm ||R|| = 1(3) Not commu ${}_B^A R {}_C^B R \neq {}_C^B R$

Euler angles describe a sequence of three rotations abo axes in order to align one coord. system with a second

Euler Angles (2)

- Concept used in rotational kinematics to describe body orientation w.r.t. inertial frame
- Sequence of three angles and prescription for rotating one reference frame into another
- Can be defined as a transformation matrix body/inertial as shown: Твл
- Euler angles are non-unique and exact <u>sequence</u> is critical

Note:

$$T_{B/I}^{-1} = T_{I/B} = T_{B/I}^{T}$$

(Pitch, Roll, Yaw) = $(\theta, \phi, \psi) \longrightarrow$

 $\begin{array}{c}
\cos\psi & \sin\psi \\
-\sin\psi & \cos\psi
\end{array}$ 0 0 () CO **Transformation** from Body to $T_{B/I}$ 0 | · $\cos\phi$ sin*ø* 0 "Inertial" frame: -sinø 0 0 $\cos\phi$ **S**11 YÅW ROLL

Quaternions

- Main problem computationally is the existence of a <u>singularity</u>
- Problem can be avoided by an application of Euler's theorem:

EULER'S THEOREM

The Orientation of a body is uniquely specified by a vector giving the direction of a body axis and a scalar specifying a rotation angle about the axis.

- Definition introduces a <u>redundant</u> <u>fourth element</u>, which eliminates the singularity.
- This is the <u>"quaternion"</u> concept
- Quaternions have no intuitively interpretable meaning to the human mind, but are computationally convenient

 $\boldsymbol{Q} = \begin{bmatrix} \boldsymbol{q}_1 \\ \boldsymbol{q}_2 \\ \boldsymbol{q}_3 \\ \boldsymbol{q}_4 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\bar{q}} \\ \boldsymbol{q}_4 \end{bmatrix}$

 $\vec{q} = \mathbf{A}$ vector

axis of rotat

 $q_4 = A$ scala

amount of r

A: Inertial B: Body

Quaternion Demo (MATLAB)

Deg

Deg

Deg

Deg

Deg

Deg

▶ 360

360

180

▶ 90

▶ 180

▶ 180

Comparison of Attitude Descriptions

Method	Euler Angles	Directio Cosine	on Angular es Velocity <u>ω</u>	Ç
Pluses	If given ϕ, ψ, θ then a unique orientation is defined	Orientation defines a unique dir- matrix R	n Vector properties, -cos commutes w.r.t addition	Con robu Idea cont
Minuses	Given orient then Euler non-unique Singularity	6 constrain must be me non-intuiti	nts Integration w.r.t et, time does not ve give orientation Needs transform	Not Nee
	Bes analyt ACS des	st for ical and sign work	Must store initial condition	E digit imple

Rigid Body Kinematics

For a RIGID BODY we can write:	$\underline{\dot{\rho}}_i = MO^r$	$\underbrace{\dot{\rho}}_{i,\text{BODY}}$ RELATIVE TION IN BODY	+ <u>@</u>	$\underline{\rho}_i =$
	$II - I \omega$	RIIGID B	ODY, (CM CO

And we are able to write:

T

Γ

$$\underline{H} = I\underline{\omega}$$

RIIGID BODY, CM CO <u>*H*</u> and <u>*\omega*</u> are resolved in 1

"The vector of angular momentum in the body frame is the proof the 3x3 Inertia matrix and the 3x1 vector of angular velocities

Inertia Matrix
Properties:Real Symmetric ; 3x3 Tensor ; coordinate depende

$$I_{11} = \sum_{i=1}^{n} m_i \left(\rho_{i2}^2 + \rho_{i3}^2 \right) \qquad I_{12} = I_{21} = I_$$

$$I = \begin{bmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{bmatrix} \qquad I_{22} = \sum_{i=1}^{n} m_i \left(\rho_{i1}^2 + \rho_{i3}^2 \right) \qquad I_{13} = I_{31} = I_{31} = I_{31} = I_{33} = I_{$$

T

Kinetic
Energy $E_{\text{total}} = \frac{1}{2} \left(\sum_{i=1}^{n} m_i \right) \dot{R}^2 + \frac{1}{2} \sum_{i=1}^{n} m_i \dot{\rho}_i^2$ For a RIGID BODY, CM Coordinates
with $\underline{\omega}$ resolved in body axis frame $E_{\text{ROT}} = \frac{1}{2} \underline{\omega} \cdot \underline{H} = \frac{1}{2}$ $\underline{\dot{H}} = \underline{T} - \underline{\omega}$ $\underline{I} \underline{\omega}$ Sum of external and internal

 $\dot{H}_{1} = I_{1}\dot{\omega}_{1} = T_{1} + (I_{22} - I_{33})\omega_{2}\omega_{3}$ $\dot{H}_{2} = I_{2}\dot{\omega}_{2} = T_{2} + (I_{33} - I_{11})\omega_{3}\omega_{1}$ $\dot{H}_{3} = I_{3}\dot{\omega}_{3} = T_{3} + (I_{11} - I_{22})\omega_{1}\omega_{2}$

No general sol Particular solut simple torque simulation usu

TORQUE-FREE CASE:

An important special case is the torque-free motio symmetric body spinning primarily about its syn

By these assumptions:

$$\omega_x, \omega_y \ll \omega_z = \Omega$$
 I_{xx}

The components of angular velocity then become:

unles

a pri

$$\omega_x(t) = \omega_{xo} \cos \omega_n t$$

$$\omega_y(t) = \omega_{yo} \cos \omega_n t$$

$$\dot{\omega}_x = -t$$

The ω_n is defined as the "natural" or "nutation" frequency of the body:

Spin Stabilized Spacecraft

UTILIZED TO STABILIZE SPINNERS

HS 376 SPACECRAFT CONFIGURATION

DUAL SPIN

- Two bodies rotating a 0 about a common axis
- Behaves like simple s 0 is despun (antennas, s
- requires torquers (jets 0 momentum control ar dampers for stability
- allows relaxation of n 0

Assessment of expected disturbance torques is an esse of rigorous spacecraft attitude control design

Typical Disturbances

- <u>Gravity Gradient:</u> "Tidal" Force due to 1/r2 gravitational for long, extended bodies (e.g. Space Shuttle, Tethered ve
- <u>Aerodynamic Drag:</u> "Weathervane" Effect due to an offse CM and the drag center of Pressure (CP). Only a factor in
- <u>Magnetic Torques:</u> Induced by residual magnetic moment spacecraft as a magnetic dipole. Only within magnetosphe
- <u>Solar Radiation:</u> Torques induced by CM and solar CP of compensate with differential reflectivity or reaction whee
- Mass Expulsion: Torques induced by leaks or jettisoned of
- <u>Internal:</u> On-board Equipment (machinery, wheels, cryoco etc...). No net effect, but internal momentum exchange af

Gravity Gradient

<u>Gravity Gradient</u> :	 1) ⊥ Local vertical 2) 0 for symmetric sp 	$n = \sqrt{acecraft}$	$/a^3 = ORB$
	3) proportional to \propto	< 1/r ³	Zb
Gravity Gradient Torques	$\underline{T} = 3n^2 \cdot \hat{r} \left[\underline{I} \Box \hat{r} \right]$		
In Body Frame	Small angle approximation	E Xb	
$\hat{r} = \begin{bmatrix} -\sin\theta & \sin\phi & 1 - \sin^2\theta - \sin^2\phi \end{bmatrix}^T \cong \begin{bmatrix} -\theta & \phi & 1 \end{bmatrix}^T$			
	Resulting torque in	BODY FRA	ME:
<u>Typical Values:</u> I=1000 kgm ²	[(]	$(I_{zz} - I_{yy})\phi$	Pitc
n=0.001 s ⁻¹ T= 6.7 x 10 ⁻⁵ Nm/deg	$\therefore T \cong 3n^2 \left[\left(I \right) \right]$	$(I_{zz} - I_{xx}) \epsilon$	$\omega_{lib} = 1$

$$\underline{T} = \underline{r} \quad \underline{F}_a$$

$$F_a = \frac{1}{2}\rho V^2 S C_D$$

Aerodynamic **Drag Coefficient** $\underline{\mathbf{r}} = \mathbf{Vector from body CM}$ to Aerodynamic CP

<u>F</u>_a = Aerodynamic Drag Vector in Body coordinates

 $1 \le C_D \le 2$

Typically in this Rar Free Molecular F

S = Frontal projected Area

V = **Orbital Velocity**

 $\rho = Atmosp$

$\frac{\text{Typical Values:}}{\text{Cd} = 2.0}$ $\text{S} = 5 \text{ m}^2$ $\text{r} = 0.1 \text{ m}$ $\text{r} = 4 \text{ x } 10^{-12} \text{ kg/m}^3$	 <u>Notes</u> (1) <u>r</u> varies with Attitude (2) ρ varies by factor of 5-10 at a given altitude (3) C_D is uncertain by 50 % 	2 x 10 ⁻⁹ kg/1 3 x 10 ⁻¹⁰ kg/ 7 x 10 ⁻¹¹ kg/ 4 x 10 ⁻¹² kg/
$T = 1.2 \text{ x } 10^{-4} \text{ Nm}$		Evnonantial

Exponential I

Magnetic Torque

 $\underline{T} = \underline{M} \quad \underline{B}$

$\underline{M} = Spacecraft residual dipole$ in AMPERE-TURN-m2 (SI) or POLE-CM (CGS)

 \underline{M} = is due to current loops and residual magnetization, and will be on the order of 100 POLE-CM or more for small spacecraft.

 $\frac{\text{Typical Values:}}{\text{B}= 3 \times 10^{-5} \text{ TESLA}}$ $M = 0.1 \text{ Atm}^2$ $T = 3 \times 10^{-6} \text{ Nm}$

<u>B</u> = Earth magnetic field vector spacecraft coordinates (BODY FR in TESLA (SI) or Gauss (CGS) u

<u>B</u> varies as 1/r3, with its direct along local magnetic field line

Conversions: 1 Atm2 = 1000 POLE-CM , 1 TESL

Solar Radiation Torque

$$\underline{T} = \underline{r} \quad \underline{F}_s$$

$$F_{s} = (1+K)P_{s}S$$
$$P_{s} = I_{s} / c$$

$$I_s = 1400 \text{ W/m}^2$$
 @ 1 A.U.

Notes:

(a) Torque is always ⊥ to sun line
(b) Independent of position or velocity as long as in sunlight

<u>Typical Values:</u> K = 0.5 S =5 m² r =0.1 m T = 3.5 x 10⁻⁶ Nm <u>r</u> = Vector from Body CM to optical Center-of-Pressure (0

<u>F</u>s = Solar Radiation pressur BODY FRAME coordinat

K = Reflectivity, 0 < K

S = Frontal Area

I_s = Solar constant, dependent dependent de la constant, de la c

Mass Expulsion Torque: $\underline{T} = \underline{r} \quad \underline{F}$

Notes:

- (1) May be deliberate (Jets, Gas venting) or accidenta
- (2) Wide Range of r, F possible; torques can dominat
- (3) Also due to jettisoning of parts (covers, cannisters

Internal Torque:

Notes:

- (1) Momentum exchange between movi has no effect on System H, but will a attitude control loops
- (2) Typically due to antenna, solar arra motion or to deployable booms and

Disturbance Torque for CDIO

Passive control techniques take advantage of basic phys principles and/or naturally occurring forces by designi the spacecraft so as to enhance the effect of one forc while reducing the effect of others.

SPIN STABILIZED

- Requires Stable Inertia Ratio: Iz > Iy = Ix0
- Requires Nutation damper: Eddy Current, Ball-in-0 Tube, Viscous Ring, Active Damping
- Requires Torquers to control precession (spin axis 0 drift) magnetically or with jets

 Δt

Iω

Inertially oriented Ο

$$\Delta H = 2H \sin \frac{\Delta \theta}{2} \cong H \Delta \theta = I \omega \cdot \Delta \theta$$
Large ω
= $rF \Delta t rF$

 $\Delta \theta \cong$ gyroscopic Hstability

<u>F</u> into page

 \dot{H} =

 $\dot{H} =$

Precession:

Passive Attitude Control (2)

GRAVITY GRADIENT

- Requires stable Inertias: $I_z \ll I_x$, I_y
- Requires Libration Damper: Eddy C Hysteresis Rods
- Requires no Torquers
- Earth oriented
- No Yaw Stability (can add momentu

Active Control Systems directly sense spacecraft att and supply a torque command to alter it as required. is the basic concept of feedback control.

- <u>Reaction Wheels</u> most common actuator
- Fast; continuous feedback control
- Moving Parts
- Internal Torque only; external still required for "momentum dumping"
- Relatively high power, weight, cost
- Control logic simple for independent axes (can get complicated with redundancy)

Typical Reaction (Momentum) Wheel Data:

Operating Range Angular Moment 1.3 M Angular Moment 4.0 M Reaction Torque

- One creates torques on a spacecraft by creating equal but torques on **Reaction Wheels** (flywheels on motors).
 - For three-axes of torque, three wheels are necessary. Usua wheels for redundancy (use wheel speed biasing equation)
 - If external torques exist, wheels will angularly accelerate to these torques. They will eventually reach an RPM limit (~ RPM) at which time they must be desaturated.
 - Static & dynamic imbalances can induce vibrations (moun
 - Usually operate around some nominal spin rate to avoid still

Ithaco RWA's (www.ithaco.com /products.html)

Waterfall plot:

Magnetic Torquers

- Often used for Low Earth Orbit (LEO) satellites
- Useful for initial acquisition maneuvers
- Commonly use for momentum desaturation ("dumping") in reaction wheel systems
- May cause harmful influence on star trackers

- Can be used
 - for attitude control
 - to de-saturate reaction
- Torque Rods and Coil
 - Torque rods are long
 - Use current to gener field
 - This field will try to Earth's magnetic fie creating a torque on
 - Can also be used to as well as orbital loc

• Thrusters / Jets

- Thrust can be used to control attitude but at the cost of consuming fuel
- Calculate required fuel using "Rocket Equation"
- Advances in micro-propulsion make this approach more feasible. Typically want $I_{sp} > 1000$ sec

- Use consumables such a (Freon, N2) or Hydrazia
- Must be ON/OFF opera proportional control usu feasible: pulse width me (PWM)
- Redundancy usually red the system more comple expensive
- Fast, powerful
- Often introduces attitud coupling
- Standard equipment on spacecraft
- May be used to "unload angular momentum on controlled spacecraft.

- Global Positioning System (GPS)
 - Currently 27 Satellites
 - 12hr Orbits
 - Accurate Ephemeris
 - Accurate Timing
 - Stand-Alone 100m
 - DGPS 5m
 - Carrier-smoothed DGPS 1-2m

- Magnetometers
 - Measure component ambient magnetic fi
 - Sensitive to field from (electronics), mount
 - Get attitude informa comparing measure
 - Tilted dipole model

Where: C=cos, S=sin, ϕ =latit Units: nTesla

 $+\mathbf{X}$

ACS Sensors: Rate Gyros and IMUs

- Rate Gyros (Gyroscopes)
 - Measure the angular rate of a spacecraft relative to inertial space
 - Need at least three. Usually use more for redundancy.
 - Can integrate to get angle.
 However,
 - DC bias errors in electronics will cause the output of the integrator to ramp and eventually saturate (drift)
 - Thus, need inertial update

- Mechanical gyros (accurate, heavy)
- Ring Laser (RLG)
- MEMS-gyros

• Inertial Measuremen

- Integrated unit wi mounting hardware
- measure rotation or rate gyros
- measure translation
 with accelerometer
- often mounted on platform (fixed in
- Performance 1: gy
 (range: 0 .003 deg
- Performance 2: line
 to 5E-06 g/g^2 ov
- Typically frequen
 external measurer
 Trackers, Sun sen
 Kalman Filter

Courtesy of Silicon Sensing Systems, Ltd. Used with permission.

ACS Sensor Performance Summary

Reference	Typical Accuracy	Remarks
Sun	1 min	Simple, reliable, low cost, not always visible
Earth	0.1 deg	Orbit dependent; usually requires scan; relatively expensive
Magnetic Field	1 deg	Economical; orbit dependent; low altitude only; low accuracy
Stars	0.001 deg	Heavy, complex, expensive, most accurate
Inertial Space	0.01 deg/hour	Rate only; good short term reference; can be heavy, power, cost

CDIO Attitude Sensing

Will not b use/afford STAR

> From whe an attitue for inertia

Potentia Electroni Magneto Tilt Sens

Heading accuracy: +/- 1.0 deg RMS @ +/- 20 deg tilt Resolution 0.1 deg, repeatability: +/- 0.3 deg Tilt accuracy: +/- 0.4 deg, Resolution 0.3 deg Sampling rate: 1-30 Hz

Problem: Accuracy insufficient to meet requirements a will need FINE POINTING mode

- Spin Stabilized Satellites
 - Spin the satellite to give it gyroscopic stability in inertial space
 - Body mount the solar arrays to guarantee partial illumination by sun at all times
 - EX: early communication satellites, stabilization for orbit changes
 - Torques are applied to precess the angular momentum vector
- De-Spun Stages
 - Some sensor and antenna systems require inertial or Earth referenced pointing
 - Place on de-spun stage
 - EX: Galileo instrument platform

- Gravity Gradient St
 - "Long" satellites
 towards Earth sine
 feels slightly more
 force.
 - Good for Earth-re
 - EX: Shuttle gravit minimizes ACS the second second
- Three-Axis Stabilization
 - For inertial or Ear pointing
 - Requires active co
 - EX: Modern com satellites, Internat Station, MIR, Hul Telescope

Method	Typical Accuracy	Remarks
Spin Stabilized	0.1 deg	Passive, simple; s inertial, low cost,
Gravity Gradient	1-3 deg	rings Passive, simple; o body oriented; lo
Jets	0.1 deg	Consumables req high cost
Magnetic	1 deg	Near Earth; slow weight, low cost
Reaction Wheels	0.01 deg	Internal torque; re other momentum high power, cost

3-axis stabilized, active control most common choice for precisi

Feedback Control Concept:

 $T^c = K \cdot \Delta \theta$

Correc torqu

Force or torque is proportional to deflection. T is the equation, which governs a simple linea or rotational "spring" system. If the spacecra responds "quickly we can estimate the require gain and system bandwidth.

Assume control saturation half-width θ_{sat} at torque command T

$$K \cong \frac{T_{sat}}{\theta_{sat}}$$
 hence $\ddot{\theta} + \left(\frac{K}{I}\right) \theta_{sat} \cong 0$

Recall the oscillator frequency of a simple linear, torsional spring:

$$\omega = \sqrt{\frac{K}{I}}$$
 [rad/sec] I = moment
of inertia

This natural frequency is approximately equal to the system bandwidth. Also,

$$f = \frac{\omega}{2\pi}$$
 [Hz] $\Rightarrow \tau = \frac{1}{f} = \frac{2\pi}{\omega}$

Is approximately the system time constant τ .

Note: we can choose any two of the set:

$$\ddot{ heta}, heta_{sat}, \omega$$

EXAM

$$\theta_{sat} = 10^{-2}$$
$$T_{sat} = 10$$
$$I = 1000$$
$$K = 1000$$

$$\omega = 1$$

$$f = 0.16$$

$$\tau = 6.3$$

Pitch Control with a single reaction wheel

Rigid Body Dynamics	$I\ddot{\theta} = T_w + T_{ext} = I$	$\dot{\omega} = \dot{H} \qquad \qquad$
Wheel Dynamics	$J(\dot{\Omega} + \ddot{\theta}) = -T_w =$	h
Feedback Law, Choose	$T_{w} = -K_{p}\theta - K_{r}$ Position Rafeedback feedback	θ Stabilize RIGID BODY
Then: $\ddot{\theta} + ($	$\left(K_r / I\right)\dot{\theta} + \left(K_p / I\right) = 0$	\rightarrow Laplace Transfor
$s^{2} +$	$\left(K_r / I\right)s + \left(K_p / I\right) = 0$	Characteristic E
$s^{2} +$	$2\zeta\omega s + \omega^2 = 0$	Nat. frequency
~ 1		$\omega = \sqrt{K_p / I} \qquad \zeta = K$

Introduce control torque force couple from jet th

$$I\ddot{\theta} = T^c$$

Only three possible values for

$$T^{c} = \begin{cases} Fl & \mathbf{C} \\ \mathbf{0} & \mathbf{C} \\ -Fl & \end{array}$$

Can stabilize (drive θ to by feedback law:

 $T^c = -Fl \cdot \operatorname{sgn}\left(\theta + \right)$

Where

$$\operatorname{sgn}(x) = \frac{x}{|x|}$$
 $\tau =$

Solution:

"PHASE PLANE"

At Switch Line: $\theta + \tau \dot{\theta} = 0$

- Low Frequency Limit Cycle
- Mostly Coasting
- Low Fuel Usage
- θ and $\dot{\theta}$ bounded

Results in the following motion

In the "REAL WORLD" things are somewhat more complicated

- Spacecraft not a RIGID body, sensor, actuator & avionic
- Digital implementation: work in the z-domain
- Time delay (lag) introduced by digital controller
- A/D and D/A conversions take time and introduce errors: 16-bit electronics, sensor noise present (e.g rate gyro @ I
- Filtering and estimation of attitude, never get \underline{q} directly

- Attitude Determination (AD) is the process of of deriving of spacecraft attitude from (sensor) measurement data. Ex determination is NOT POSSIBLE, always have some error
- Single Axis AD: Determine orientation of a single spaced in space (usually spin axis)
- Three Axis AD: Complete Orientation; single axis (Euler when using Quaternions) plus rotation about that axis

- Utilizes sensors that yield an arclength measurement between sensor boresight and known reference point (e.g. sun, nadir)
- Requires at least two independent measurements and a scheme to choose between the true and false solution
- Total lack of a priori estimate requires three measurements
- Cone angles only are measured, not full 3-component vectors. The reference (e.g. sun, earth) vectors are known in the reference frame, but only partially so in the body frame.

- Need two vectors (u,v) measured in the spacecraft frame and known in reference frame (e.g. star position on the celestial sphere)
- Generally there is redundant data available; can extend the calculations on this chart to include a least-squares estimate for the attitude
- Do generally not need to know absolute values

Define:

$$\hat{i} = u / |u|$$
$$j = (u \quad v) / |u|$$
$$\hat{k} = \hat{i} \quad \hat{j}$$

Want Attitude Matrix

So: $T = MN^{-1}$

<u>Note:</u> N must be non-singular (= full rank)

The previous solutions for Euler's equations were only valid for a RIGID BODY. When flexibility exists, <u>energy dissipation</u> will occur.

Controls/Structure Interaction

- Need on-board COMPUTER
 - Increasing need for on-board performance and autonomy
 - Typical performance (somewhat outdated: early 1990's)
 - 35 pounds, 15 Watts, 200K words, 100 Kflops/sec, CMOS
 - Rapidly expanding technology in real-time space-based comput
 - Nowadays get smaller computers, rad-hard, more MIPS
 - Software development and testing, e.g. SIMULINK Real Time compilation from development environment MATLAB C, C++ processor is getting easier every year. Increased attention on sor
- Ground Processing
 - Typical ground tasks: Data Formatting, control functions, data a
 - Don't neglect; can be a large program element (operations)
- Testing
 - Design must be such that it can be tested
 - Several levels of tests: (1) benchtop/component level, (2) environt testing (vibration, thermal, vacuum), (3) ACS tests: air bearing, simulation with part hardware, part simulated

- Maneuvers
 - Typically: Attitude and Position Hold, Tracking/Slewing, SAFE
 - Initial Acquisition maneuvers frequently required
 - Impacts control logic, operations, software
 - Sometimes constrains system design
 - Maneuver design must consider other systems, I.e.: solar arrays towards sun, radiators pointed toward space, antennas toward E
- Attitude/Translation Coupling
 - (1) $\Delta \mathbf{v}$ from thrusters can affect attitude
 - (2) Attitude thrusters can perturb the orbit
- Simulation
 - Numerical integration of dynamic equations of motion
 - Very useful for predicting and verifying attitude performance
 - Can also be used as "surrogate" data generator
 - "Hybrid" simulation: use some or all of actual hardware, digital the spacecraft dynamics (plant)
 - can be expensive, but save money later in the program

H/W

- Lower Cost
 - Standardized Spacecraft, Modularity
 - Smaller spacecraft, smaller Inertias
 - Technological progress: laser gyros, MEMS, magnetic wheel b
 - Greater on-board autonomy
 - Simpler spacecraft design
- Integration of GPS (LEO)
 - Allows spacecraft to perform on-board navigation; functions in from ground station control
 - Potential use for attitude sensing (large spacecraft only)
- Very large, evolving systems
 - Space station ACS requirements change with each added modu
 - Large spacecraft up to 1km under study (e.g. TPF Able "kilotru
 - Attitude control increasingly dominated by controls/structure in
 - Spacecraft shape sensing/distributed sensors and actuators

Visible Earth Imager using a Distributed Satellite System

- No ΔV required for collector spacecraft
- Only need ΔV to hold combiner spacecraft at paraboloid's focus

Formation Flyin

- Exploit natural orbi synthesize sparse ap using formation fly
- Hill's equations explore orbit ellipse" solutions

ACS Model of NGST (large, flexible S/

Source: G. Mosier
NASA GSFCGuiderCamera

Important to assess impact of attitude jitter ("stability") on image quality. Can compensate with fine pointing system. Use a guider camera as sensor and a 2-axis FSM as actuator.

F H RMS

E.g. HST: RMS LOS =

- James French: AIAA Short Course: "Spacecraft Systems Engineering", Washington D.C.,1995
- Prof. Walter Hollister: 16.851 "Satellite Engineering" Co Fall 1997
- James R. Wertz and Wiley J. Larson: "Space Mission An Design", Second Edition, Space Technology Series, Spac Library, Microcosm Inc, Kluwer Academic Publishers